

Going Green?

Protect with Broadcom Optocouplers

Broadcom Optocouplers

Enabling Green Energy Applications

Broadcom optocouplers are used in an array of **green applications** ranging from **solar** and **wind inverters**, **energy storage, automotive electric vehicles** and **charging** and **power supplies**. The primary purpose of an optocoupler is to provide both electrical insulation and signal isolation.

Optocouplers eliminate the effects of electrical noise caused by crosstalk, power glitches and electrical interference. They provide high voltage isolation allowing safe interface between high and low voltages in electrical circuits.

Broadcom's key optocoupler products include gate drivers for driving power switches like IGBT, SiC and GaN, isolation amplifiers for phase current and bus voltage measurements, high speed digital optocoupler for data transmission and communication.

The popularity of Broadcom optocouplers in these green applications is due to their ability to **drive inverters more efficiently**, to **reduce copper losses by providing high insulation voltage** and to **consume less power during current sensing and data transmission.**

Green Energy Applications

Isolation Solutions for EV Chargers, Renewable Energy Systems

	Gate Driver	Voltage / Current Sensor	Digital	Specific Function, SSR
ESS ¹ – Power Conversion System, Battery Mgmt Sys	\checkmark	\checkmark	\checkmark	\checkmark
Renewable Energy Inverter	\checkmark	\checkmark	\checkmark	
Wind Turbines	\checkmark	\checkmark	\checkmark	
DC Fast Charger, Wall Boxes	\checkmark	\checkmark	\checkmark	
AC Wall Boxes, IC-CPD ²			\checkmark	\checkmark

1. Energy Storage System

2. In-Cable Control & Protection Devices

Green Energy Conversion Protect with Broadcom Optocouplers

Optimized for Critical Under-the-hood and EV Powertrain

	Gate Drive
On-Board Charger (OBC)	\checkmark
DC/DC Converter	\checkmark
Traction Inverter	\checkmark
Heating, Ventilation, Air Conditioning (HVAC)	\checkmark
Battery Management System (BMS)	

Automotive Applications

Voltage / Current Sensor	Digital	Photo MOSFET/ Driver	
\checkmark	\checkmark	\checkmark	
 \checkmark	\checkmark	\checkmark	

Traction Inverter

- Analog Sensing
- Voltage Sensing
- Current Sensing
- Analog Feedback
- Digital Communication Interface
- CAN/SPI/I²C Bus
- Status Control

Gate Driver

- SiC/IGBT/MOSFET Driver
- Active Discharging / Pre-Charging Driver
- SiC/IGBT/MOSFET Driver

On-Board Charger (OBC)

- Analog Sensing
- Voltage Sensing
- Current Sensing
- Analog Feedback

Digital Communication Interface

- Wake-up/Status Control
- Fault Feedback
- Gate Driver
- SiC/IGBT/MOSFET Driver

DC/DC Converter

Analog Sensing

- Voltage Sensing
- Current Sensing
- Analog Feedback
- Digital Communication Interface
- CAN/SPI/I²C Bus
- Status Control
- Gate Driver
- SiC/IGBT/MOSFET Driver

Battery Management System (BMS)

- Battery Pack Monitoring
- Voltage Sensing
- Battery Cell Management Wake-up/Status Control
- Fault Feedback
- Digital Communication Interface
- CAN/SPI/I²C Bus
- Status Control

Gate Drive Optocouplers

Current & Voltage Sensors

10A gate drive optocouplers enable efficient green power conversion

The green energy harnessed needs to be conditioned before it can be used for household needs, for charging electric vehicles or be fed into the grid. The conditioning process is done using a power inverter or converter which consists of power switches like the IGBT. With the emergence of **wide bandgap semiconductors, Silicon Carbide (SiC)** and **Gallium Nitride (GaN)** power switches, **the efficiency of power conversion has reached new heights of 99%**.

To enable SiC and GaN power switches, Broadcom has released **10A gate drive optocouplers** to drive them efficiently, with **low conduction and switching losses**. These 10A drivers come with **smart FAULT protection** features, in **single or dual channels**, and can withstand more than **100kV/µs of noise immunity** (dv/dt).

Gate Drive Optocouplers	Features & Benefits
ACPL-355JC with DESAT Protection	• 10A
Single Channel : ACPL-3161T 😑 , ACFL-3161	• 100kV/µs of noise immunity (dv/dt)
Dual-Channel : ACFJ-3262T 🚖 , ACFJ-3262	\bullet High insulation voltage up to $2262V_{_{\rm PK}}$
ACFJ-3439T with DESAT Protection 😭	• Up to 17A

±50mV isolation amplifiers designed for efficient high current sensing

Isolation amplifiers are widely used for current and voltage sensing in renewable energy systems such as solar inverter systems and wind power converter systems.

In a typical solar inverter system, voltage sensors are used to measure the bus voltage of the DC-AC inverter while current sensors are used to measure the output current of the DC-AC inverter. They have a **high gain accuracy of ± 0.5%** and excellent linearity for precise, stable and accurate measurements.

Our **±50mV** linear input range isolation amplifiers are capable of **lower shunt power dissipation while measuring high current**. They are available in compact packages that meet worldwide safety approvals and are RoHS compliant.

Isolation Amplifiers & Modulators	
ACPL-C72B/A/0	• ±50m\
ACPL-736J	High gaVery lo
ACPL-C87BT/AT	• DC Vo

Features & Benefits

V linear input range gain accuracy of ±0.5% / ±1% / ±3% ow shunt power dissipation

oltage Sensor (+2.0V, 0.5% /1%)

ACNT Optocouplers

15mm package technology enables high voltage applications to achieve high power conversion efficiency

In the field of renewable energy generation, storage, and rail traction control systems, there is a growing trend towards higher DC bus operation and increased requirements for handling transient overvoltages. For instance, in recent years, new solar systems have been upgraded to operate at $1500V_{DC}$, aiming to enhance power density through higher voltage. This approach allows the system to **achieve high power conversion efficiency without increasing current, thereby reducing copper losses**. However, a significant challenge faced by the $1500V_{DC}$ system is finding components that comply with the stringent electrical safety standards and worldwide certifications for high voltage.

This challenge can be overcome with Broadcom's innovative ACNT package, which offers a compact footprint with a 15mm wide creepage, ensuring sufficient clearance for high voltages. Additionally, the ACNT package provides enhanced high voltage protection (**2262V**_{PK}) and signal isolation in confined spaces. It also improves common mode transient immunity (CMTI) to over **100kV/µs** for gate drive products, effectively minimizing erroneous switching failures. The ACNT package is an ideal choice for such high voltage applications.

Optocouplers in ACNT package	Features & Benefits	
ACNT-H343 Gate Drive		1220 100
ACNT-H79B/A/0 Current Sense	ACNT Package	-3250
ACNT-H87B/A/0 Voltage Sense	15mm Creepage	
ACNT-H61L/H61LC 10MBd ACNT-H50L/H511/H511C 1MBd		- AND

Digital & Specific Function Optocouplers

Unique low-power features for power-efficient applications

Broadcom's LED-input optocouplers **consume very little** power especially when they are not transmitting, **unlike capacitive and magnetic-based isolators** which are in a continuous on state, regardless of the output logic. This unique feature makes optocouplers the **most power-efficient** choice for applications operating in extended standby mode, or where duty cycles are low.

Optocouplers lead in low power consumption!

Even when the optocouplers are actively transmitting, the low input current (~1.6mA) coupled with a low turn on voltage (~1.3V) of the LED ensures that optocouplers are always energy efficient and cool to operate.

Low Power Optocouplers	Description	
ACPL-M50L/054L/W50L/K54L	1MBd, Open-collector output	
ACPL-M61L/064L/W61L/K64L	10MBd, CMOS output	
ACPL-K376	AC/DC Voltage/Current Detector	
ACPL-M417T/M419T	80V Transistor Output. Low IF with high gain	

Photovoltaic MOSFET & Driver in **Electric Vehicles**

Replace mechanical relays with solid state relays

Solid-state relays (SSRs) have gained popularity as replacements for mechanical relays due to their enhanced reliability, faster switching times, absence of switching bounce, and compact size. However, some designers are hesitant to transition from mechanical relays to their solid-state counterparts due to potential drawbacks such as higher relative ON resistance and increased cost. Fortunately, there is an alternative solution that addresses both of these concerns, which involves employing a combination of a photovoltaic driver and discrete MOSFETs to create a solid-state relay.

Given the competitive prices of MOSFETs available in the current market, utilizing a photovoltaic driver in conjunction with one or two discrete MOSFETs to construct a solid-state relay presents a favorable option for replacing mechanical relays.

Furthermore, when two back-to-back MOSFETs are incorporated into the setup, the combination forms a bidirectional switch, resulting in the SSR being equivalent to a 1FormA Electromechanical Relay (EMR).

Photovoltaic MOSFET & Driver	Description
ACPL-K30T ACPL-K309T	Photovoltaic MOSFET Driver, 7V open circuit voltage at I_F = 10mA Photovoltaic MOSFET Driver, 14.3V open circuit voltage at I_F = 10mA
ASSR-601JV/JT APML-600JV/JT	1500V Photo MOSFET with 1uA leakage current
APML-1611T	60V/2.5A Photo MOSFET to replace low voltage expensive mechanical relays

Optocouplers Product Stewardship

Broadcom strives to provide the highest quality products while ensuring compliance with the relevant regulatory requirements, including RoHS, REACH and regulations related to Conflict Minerals. Refer to Broadcom's Environmental. Social & Governance (ESG) report for more information on environmental stewardship.

Broadcom Inc. is a global infrastructure technology leader built on 50 years of innovation, collaboration and engineering excellence.

Broadcom Inc. (NASDAQ: AVGO) is a global technology leader that designs, develops and supplies a broad range of semiconductor and infrastructure software solutions.

Broadcom's category-leading product portfolio serves critical markets including data center, networking, enterprise software, broadband, wireless, storage and industrial. Our solutions include data center networking and storage, enterprise, mainframe and cybersecurity software focused on automation, monitoring and security, smartphone components, telecoms and factory automation. For more information, go to <u>www.broadcom.com</u>.

Learn more at:

broadcom.com/optocouplers

For product information please visit our website at: broadcom.com

Copyright © 2023 Broadcom. All Rights Reserved. Broadcom, the pulse logo, Connecting everything, are among the trademarks of Broadcom. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. November 2023