
©National Instruments. All rights reserved. LabVIEW, National Instruments, NI, ni.com, the National Instruments corporate logo, and the Eagle logo are trademarks
of National Instruments. See ni.com/trademarks for other NI trademarks. Other product and company names are trademarks or trade names of their respective
companies. For patents covering National Instruments products, refer to the appropriate location: Help>>patents in your software, the patents.txt file on your CD,
or ni.com/patents.

The Benefits of Programming Graphically in NI

LabVIEW

For more than 20 years, NI LabVIEW has been used by millions of engineers and scientists to

develop sophisticated test, measurement, and control applications. While LabVIEW provides a

variety of features and tools ranging from interactive assistants to configurable user-defined

interfaces, it is differentiated by its graphical, general-purpose programming language (known as

G) along with an associated integrated compiler, a linker, and debugging tools.

A Brief History of the Pursuit of Higher-Level Programming

To better understand the major value propositions of LabVIEW graphical programming, it is

helpful to review some background on the first higher-level programming language. At the dawn

of the modern computer age in the mid-1950s, a small team at IBM decided to create a more

practical alternative to programming the enormous IBM 704 mainframe (a supercomputer in its

day) in low-level assembly language, the most modern language available at the time. The result

was FORTRAN, a more human-readable programming language whose purpose was to speed up

the development process.

The engineering community was initially skeptical that this new method could outperform

programs hand-crafted in assembly, but soon it was shown that FORTRAN-generated programs

ran nearly as efficiently as those written in assembly. At the same time, FORTRAN reduced the

number of programming statements necessary in a program by a factor of 20, which is why it is

often considered the first higher-level programming language. Not surprisingly, FORTRAN

quickly gained acceptance in the scientific community and remains influential.

Fifty years later, there are still important lessons in this anecdote. First, for more than 50 years,

engineers have sought easier and faster ways to solve problems through computer programming.

Second, the programming languages chosen by engineers to translate their tasks have trended

toward higher levels of abstraction. These lessons help explain the immense popularity and

widespread adoption of G since its inception in 1986; G represents an extremely high-level

programming language whose purpose is to increase the productivity of its users while executing

at nearly the same speeds as lower-level languages like FORTRAN, C, and C++.

LabVIEW: Graphical, Dataflow Programming

LabVIEW is different from most other general-purpose programming languages in two major

ways. First, G programming is performed by wiring together graphical icons on a diagram,

which is then compiled directly to machine code so the computer processors can execute it.

 2 www.ni.com

While represented graphically instead of with text, G contains the same programming concepts

found in most traditional languages. For example, G includes all the standard constructs, such as

data types, loops, event handling, variables, recursion, and object-oriented programming.

Figure 1. A While Loop in G is intuitively represented by a graphical loop, which executes

until a stop condition is met.

The second main differentiator is that G code developed with LabVIEW executes according to

the rules of data flow instead of the more traditional procedural approach (in other words, a

sequential series of commands to be carried out) found in most text-based programming

languages like C and C++. Dataflow languages like G (as well as Agilent VEE, Microsoft Visual

Programming Language, and Apple Quartz Composer) promote data as the main concept behind

any program. Dataflow execution is data-driven, or data-dependent. The flow of data between

nodes in the program, not sequential lines of text, determines the execution order.

This distinction may seem minor at first, but the impact is extraordinary because it renders the

data paths between parts of the program to be the developer’s main focus. Nodes in a LabVIEW

program (in other words, functions, structures such as loops, subroutines, and so on) have inputs,

process data, and produce outputs. Once all of a given node’s inputs contain valid data, that node

executes its logic, produces output data, and passes that data to the next node in the dataflow

 3 www.ni.com

path. A node that receives data from another node can execute only after the other node

completes execution.

Benefits of G Programming

Intuitive Graphical Programming

Like most people, engineers and scientists learn by seeing and processing images without any

need for conscious contemplation. Many engineers and scientists can also be characterized as

“visual thinkers,” meaning that they are especially adept at using visual processing to organize

information. In other words, they think best in pictures. This is often reinforced in colleges and

universities, where students are encouraged to model solutions to problems as process diagrams.

However, most general-purpose programming languages require you to spend significant time

learning the specific text-based syntax associated with that language and then map the structure

of the language to the problem being solved. Graphical programming with G provides a more

intuitive experience.

G code is typically easier for engineers and scientists to quickly understand because they are

largely familiar with visualizing and even diagrammatically modeling processes and tasks in

terms of block diagrams and flowcharts (which also follow the rules of data flow). In addition,

because dataflow languages require you to base the structure of the program around the flow of

data, you are encouraged to think in terms of the problem you need to solve. For example, a

typical G program might first acquire several channels of temperature data, then pass the data to

an analysis function, and, finally, write the analyzed data to disk. Overall, the flow of data and

steps involved in this program are easy to understand within a LabVIEW diagram.

Figure 2. Data originates in the acquisition function and then flows intuitively to the

analysis and storage functions through wires.

 4 www.ni.com

Interactive Debugging Tools

Because LabVIEW graphical G code is easy to comprehend, common programming tasks, like

debugging, become more intuitive as well. For example, LabVIEW provides unique debugging

tools that you can use to watch as data interactively moves through the wires of a LabVIEW

program and see the data values as they pass from one function to another along the wires

(known within LabVIEW as execution highlighting).

Figure 3. Highlight execution provides an intuitive way to understand the execution order

of G code.

LabVIEW also offers debugging features for G comparable to those found in traditional

programming tools. These features, accessible as part of the toolbar for a diagram, include

probes, breakpoints, and step over/into/out of.

Figure 4. The block diagram toolbar offers access to standard debugging tools like

stepping.

With the G debugging tools, you can probe data on many parts of the program simultaneously,

pause execution, and step into a subroutine without complex programming. While this is possible

in other programming languages, it is easier to visualize the state of the program and the

relationships between parallel parts of the code (which are common in G because of its graphical

nature).

 5 www.ni.com

Figure 5. Probes are effective ways in LabVIEW to see values traveling on wires

throughout the application, even for parallel sections of code.

Figure 6. View probe values in the Probe Watch Window, which displays probe values for

any probes in the entire application (including subroutines).

One of the most common debugging features used in LabVIEW is the always-on compiler.

While you are developing a program, the compiler continuously checks for errors and provides

semantic and syntactic feedback on the application. If an error exists, you cannot run the

program – you see only a broken Run button in the toolbar.

 6 www.ni.com

Figure 7. The broken Run arrow provides immediate feedback indicating syntactical errors

in the G code.

Pressing the broken Run button opens a list of problems that you must address. Once you have

addressed these issues the LabVIEW compiler can compile your program to machine code. Once

compiled, the performance of G programs is comparable to that of more traditional text-based

languages like C.

Figure 8. The error list displays a detailed explanation of each syntax error in the entire

code hierarchy.

Automatic Parallelism and Performance

Dataflow languages like LabVIEW allow for automatic parallelization. In contrast to sequential

languages like C and C++, graphical programs inherently contain information about which parts

of the code should execute in parallel. For example, a common G design pattern is the

 7 www.ni.com

Producer/Consumer Design Pattern, in which two separate While Loops execute independently:

the first loop is responsible for producing data and the second loop processes data. Despite

executing in parallel (possibly at different rates), data is passed between the two loops using

queues, which are standard data structures in general-purpose programming languages.

Figure 9. The LabVIEW Producer/Consumer design pattern is often used to increase the

performance of applications that require parallel tasks.

Parallelism is important in computer programs because it can unlock performance gains relative

to purely sequential programs due to recent changes in computer processor designs. For more

than 40 years, computer chip manufacturers increased processor clock speed to increase chip

performance. Today, however, increasing clock speeds for performance gains is no longer viable

because of power consumption and heat dissipation constraints. As a result, chip vendors have

instead moved to new chip architectures with multiple processor cores on a single chip.

To take advantage of the performance available in multicore processors, you must be able to use

multithreading within your applications (in other words, break up applications into discrete

sections that can be executed independently). If you use traditional text-based languages, you

must explicitly create and manage threads to implement parallelism, a major challenge for

nonexpert programmers.

In contrast, the parallel nature of G code makes multitasking and multithreading simple to

implement. The built-in compiler continually works in the background to identify parallel

 8 www.ni.com

sections of code. Whenever G code has a branch in a wire, or a parallel sequence of nodes on the

diagram, the compiler tries to execute the code in parallel within a set of threads that LabVIEW

manages automatically. In computer science terms, this is called “implicit parallelism” because

you do not have to specifically write code with the purpose of running it in parallel; the G

language takes care of parallelism on its own.

Beyond multithreading on a multicore system, G can provide even greater parallel execution by

extending graphical programming to field-programmable gate arrays (FPGAs). FPGAs are

reprogrammable silicon chips that are massively parallel – with each independent processing task

assigned to a dedicated section of the chip – but they are not limited by the number of processing

cores available. As a result, the performance of one part of the application is not adversely

affected when more processing is added.

Historically, FPGA programming was the province of only a specially trained expert with a deep

understanding of digital hardware design languages. Increasingly, engineers without FPGA

expertise want to use FPGA-based custom hardware for unique timing and triggering routines,

ultrahigh-speed control, interfacing to digital protocols, digital signal processing (DSP), RF and

communications, and many other applications requiring high-speed hardware reliability,

customization, and tight determinism. G is particularly suited for FPGA programming because it

clearly represents parallelism and data flow and is quickly growing in popularity as a tool of

choice for developers seeking parallel processing and deterministic execution.

Figure 10. LabVIEW FPGA code with parallelism becomes truly independent pathways on

the FPGA silicon.

 9 www.ni.com

Abstraction of Low-Level Tasks

As demonstrated in the FORTRAN narrative, abstraction is one of the principal benefits of

higher-level programming languages, which express programs in more intuitive ways when

compared with lower-level languages. G automatically handles many of the challenges that you

normally must contend with in a text-based programming language (like memory usage). In a

text-based language, you are responsible for allocating memory before using it and de-allocating

it once it is no longer needed. You also must remember to be careful not to write past the end of

the memory allocated in the first place. Failure to allocate memory or to allocate enough memory

is one of the biggest mistakes you can make in text-based languages. Inadequate memory

allocation is also a difficult problem to debug.

Automatic memory handling is one of the chief benefits of programming in G. Using G, you do

not allocate variables nor assign values to and from them. Instead, as explained earlier, you

create a diagram with connections representing the transition of data. Nodes on a LabVIEW

diagram that generate data automatically handle allocating the storage for that data. When data is

no longer being used, the associated memory is also de-allocated automatically. If you add new

information to an array or a string, more memory is automatically allocated to manage the new

information. The removal of the low-level memory management details frees you to focus on the

problem you are trying to solve instead of studying complex rules associated with preventing a

run-time error in the execution of the program.

At the same time, if you want lower-level control of G memory usage, you can use built-in

memory management tools to help monitor memory; this is part of an opt-in approach that you

can decide to use in a particular application or even a portion of an application. If you determine

that memory usage is an issue for a LabVIEW program, you can intervene to lower the amount

of memory you are using through more advanced programming techniques.

 10 www.ni.com

Figure 11. Managing memory in LabVIEW is optional, but advanced users can profile

memory usage to help identify portions of the application to optimize.

When G code exhibits unusual or unexpected behavior that you cannot easily resolve using the

previously mentioned debugging tools, you can use more advanced debugging features with the

LabVIEW Desktop Execution Trace Toolkit. This toolkit is designed for more advanced users

who want to perform dynamic code analysis for the following:

 Detecting memory and reference leaks

 Isolating the source of a specific event or undesired behavior

 Screening applications for areas where performance can be improved

 Identifying the last call before an error

 Ensuring the execution of an application is the same on different targets

 11 www.ni.com

Figure 12. If you need lower-level debugging, you can use the LabVIEW Desktop

Execution Trace Toolkit to view the dynamic execution characteristics of an application.

Combining G with Other Languages

While G code provides an excellent representation for parallelism and removes the requirement

on developers to understand and manage computer memory, it is not necessarily ideal for every

task. In particular, mathematical formulas and equations can often be more succinctly

represented with text. For that reason, you can use LabVIEW to combine graphical programming

with several forms of text-based programming. Working within LabVIEW, you can choose a

textual approach, a graphical approach, or a combination of the two.

For example, LabVIEW contains the concept of the Formula Node, which evaluates textual

mathematical formulas and expressions similar to C on the block diagram. These mathematical

formulas can execute side by side and integrate with graphical LabVIEW code.

 12 www.ni.com

Figure 13. The Formula Node uses syntax similar to C to represent mathematical

expressions in a succinct, text-based format.

Similarly, the MathScript Node adds math-oriented, textual programming to LabVIEW that is

generally compatible with the commonly used .m file syntax.

Figure 14. With the MathScript Node, you can create or reuse .m file scripts for signal

processing and data analysis.

 13 www.ni.com

A Better Way for You to Solve Problems

LabVIEW and its graphical, dataflow programming language provides a better way for you to

solve problems than traditional, lower-level alternatives, and the proof is in its longevity. The

key differentiators for programming in G are the intuitive graphical code that you can create and

the data-driven rules that govern its execution combine to offer a programming experience that

expresses the thought processes of its users more closely than other languages. Despite G being a

higher-level language, you can still achieve performance comparable to that of languages like C

because of the built-in LabVIEW compiler.

